	92000	Part A Introducti	on	
Pr	rogram:Certificate Cour	se Class:BCAI Year	Year: 2021	Session: 2021-2022
1	Course Code	S1-	BCAC2G	412
2	Course Title	Discrete Mathematics		
3	Course Type		Elective	
4	Pre-requisite (if any)	Open for All		A (195)
	Course Learning Outcomes (CLO)	 The course will enable the students: 1.Apply the Boolean algebra, switching circuits and their applications. 2. Minimize the Boolean Function using Karnaugh Map. 3. Understand the lattices and their types. 4. Graphs, their types and its applications in study of shortest path algorithms. 5. Test whether two given graphs are isomorphic. 6. Understand the Eulerian and Hamiltonian graphs. 7. Represent graphs using adjacency and incidence matrices. 8. Understand the discrete numeric functions, generating functions and Recurrence Relations. 		
6	Credit Value	Theory:6Credit		
7	Total Marks	Max. Marks: 25 + 75	Min. Passing	Marks: 33
	1	Part B - Content of the	Course	
	Total No.	of Lectures (in hours per w	eek): 3 hours per	week
Uı	nit	Topics		No. of Lectures
		Inversa Composite and		

	Part B - Content of the Course					
Total No. of Lectures (in hours per week): 3 hours per week Total Lectures: 90 hours						
Unit	Topics	No. of Lectures				
I	Relations: Binary, Inverse, Composite and Equivalence relation, Equivalence classes and its properties, Partition of a set, Partial order relation, Partially ordered and Totally ordered sets, Hasse diagram. Lattices: Definition and examples, Dual, bounded, distributive and complemented lattices.	18				
П	Boolean Algebra: Definition and properties, Switching circuits and its applications, Logic gates and circuits. Boolean functions: Disjunctive and conjunctive normal forms, Bool's expansion theorem, Minimize the Boolean function using Karnaugh Map.	18				
III	Graphs:Definition and types of graphs, Subgraphs, Walk, path and circuit, Connected and disconnected graphs, Euler graph, Hamiltonian path and circuit, Dijkstra's Algorithm for shortest paths in weighted graph.	18				

IV	Trees: Definition and its properties, Rooted, Binary and Spanning tree Rank and nullity of agraph, Kruskal's and Prim's Algorithm, Cut-set and its properties, Fundamental Circuit and Cut-Set, Planar graphs. Matrix representation of graphs: Incidence, Adjacency, Circuit, Cut-Set, Path.	
	Discrete numeric and generating functions: Operations on numeric functions, Asymptotic behavior of numeric functions, Generating functions.	
V	Recurrence relations and recursive algorithms: Recurrence relations, Linear recurrence relations with constant coefficients, Homogeneous solutions, Particular solutions, Total solutions, Solution by the method of generating functions.	18

Keywords/Tags:

Relation, Hasse diagram, Lattices, Boolean Algebra, Boolean function, Graph and Subgraph, Path and circuit, Tree, Spanning tree, Cut-set, Matrix representation of graph, Discrete numeric function, Generating function, Recurrence relation, Recursive algorithm.

Part C - Learning Resources

Text Books, Reference Books, Other Resources

Suggested Readings:

Text Books:

- 1. J. P. Tremblay and R. Manohar, Discrete Mathematical Structures With Applications To Computer Science, McGraw Hill Education, 1st edition, 2017.
- C. L. Liu: Elements of Discrete Mathematics, McGraw Hill Education, 4th edition, 2017.
- Narsingh Deo: Graph Theory with Applications to Engineering and Computer Science, Prentice Hall India Learning Private Limited, 1979.
- 4. मध्य प्रदेश हिन्दी ग्रंथ अकादमी से प्रकाशित विषय से संबंधित पुस्तकें।

Reference Books:

- Seymour Lipschutz and Mark Lipson: Discrete Mathematics (Schaums Outline), McGraw Hill Education, 3rd edition, 2017.
- 2. Edgar G. Goodaire and Michael M. Parmenter, Discrete Mathematics with Graph Theory, Pearson Education Pt.Ltd., Indian Reprint 2003.

Suggested Digital Platforms Web links:

https://www.highereducation.mp.gov.in/?page=xhzIQmpZwkylQo2b%2Fy5G7w%3D%3D

Suggested Equivalent online courses:

https://nptel.ac.in/courses/111106086/

https://ugcmoocs.inflibnet.ac.in/index.php/courses/view_ug/311

Part D: Assessment and Evaluation Suggested Continuous Evaluation Methods:						
Continuous Comprehensive I						
University Exam (UE):	75Marks					
Internal Assessment:	Class Test	15				
Continuous	Assignment/Presentation	10				
Comprehensive Evaluation (CCE)		Total Marks: 25				
External Assessment:	Section (A): Three Very Short Questions	$03 \times 03 = 09$.				
University Exam (UE) Time: 02.00 Hours	(50 Words Each) Section (B): Four Short Questions	$04 \times 09 = 36$				
1.00	(200 Words Each)	$02 \times 15 = 30$				
	Section (C): Two Long Questions (500 Words Each)	Total Marks: 75				

